Granby Junior School

Maths Calculation Policy

Review Date	Approved by	Governor Minute Reference

Granby Junior School Calculation Policy 2022

At Granby Junior School we believe that learning in mathematics should be underpinned through a concrete, pictorial and abstract approach. Both mental and written methods are important and children will be taught how to choose the most efficient method depending on the calculation given.

The calculation policy covers year 1 to year 6 to ensure that progression from Infants to KS2 is clear and to support the catch-up curriculum.

Addition Vocabulary: add, addition, total, altogether, sum, more

Objective	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole model	Counters, cubes, base 10	Use pictures to add 2 numbers together	4 + 3 = 7 7 = 4 + 3 (understanding the concept of the = sign important here)
Counting on – starting at the biggest number (count on not count all)		Numbertracks and numberlines to count on from larger number (encourages them to not to count all) $\underbrace{1}_{0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12}$? = 4 + 7 7 + 4 = ? Place the larger number in your head and count on
Regrouping to make 10	Use tens frames with cubes/counters	Draw tens frame and counters	7 + 4 = ? 3 1 I know that 7 + 3 = 10, so I need to add 1 more to make 11

Objective	Concrete	Pictorial	Abstract
Add multiples of 10	Use base 10 30 + 20	Use representations of base 10	50 = 20 + 30 30 + 20 = 50
Use known facts	$ \begin{array}{c} \Box \Box \Box + \Box \Box \Box = & \Box \Box \Box \Box \Box \\ \Box \Box \Box + & \Box \Box = & \Box \Box \Box \Box \\ 3 + 3 = 6 \\ 30 + 30 = 60 \end{array} $	Use representations 5. Jase 10 + +	3 + 2 = 5 So 30 + 20 = 50 Moving to 300 + 200
Add a 2 digit number and ones	Developing an understanding of partitioning and place value, using Base 10, PV counters or numicon 41 + 8	Use representations of base 10 and tens frame	41 + 8 = 49 *recall of number facts must be secure by this point 1 + 8 = 9
Add a 2 digit number and tens	Use base 10, place value counters and grids (explore how the 1s don't change) 32 + 20 = 52 + +	Counting on a number square	32 + 10 = 42 32 + 20 = 52 Counting in tens: 32 (hold it in your head), 42, 52

KS2 Addition

Objective	Concrete	Pictorial	Abstract
Add a three-digit number and ones (mental) Year 3	Base 10 Explore which columns will change and discuss why. Look at where there might be an exchange.	Draw representations	125 + 7 = Make the next 10 125 + 5 = 130 + 2 = 132
Add a three-digit	Use base 10, place value counters and grids	Draw representation	Count on in 10s
number and tens	Explore which columns will change and wry	Number squares	176 + 40
(mental) Year 3		Bar models Number lines 176 186 196 206 216	176 + 40 176 (held in head), 186, 196, 206, 2016
Add a three-digit	Use base 10, place value counters and		Count on in 100s
hundreds (mental) Year 3	Explore which columns will change and why		176 + 300
			176 (held in head), 276, 376, 476

Partition to add increasingly large numbers Year 4 – HTU + HTU up to 4 digits Year 5 up to 5 digits and decimals Year 6 increasingly larger numbers	Partition into HTO then add and recombine 100 (100 (100 (100 + 100 (100))) + 100 (100)	Draw PV counters OR base 10 equipment 324 + 263 000 + 00 = 500 00 + 0000 = 80 0000 + 0000 = 7	Jottings to add Either partition both numbers and recombine or partition the second number only e.g. 358 + 73 = 358 + 70 + 3 or 300 + (50+70) + (8+3) Decimals: 35.8 + 7.3 35 + 7 = 42 0.8 + 0.3 = 1.1 then recombine 42 + 1.1 = 43.1
Written methods			
Add numbers with up to three digits, using a formal written of columnar addition Expanded form first leading to formal column method	Use Base 10, place value counters and place value grids Model adding ones first – always start on the right	Expanded form $24 + 15$ $= 24 + 15$ $+ \cdots$ $30 + 9 = 39$ Draw representation – place value counters	Expanded form 20 + 4 10 + 5 30 + 9 = 39 Leading to formal written method 34 + 15 39

Subtraction – take away, subtract, less than, the difference, minus, fewer, decrease,

Objective/strategy	Concrete	Pictorial	Abstract
Subtract ones	Removing objects 5 - 3	Crossing out	5 – 3 = 2
Counting back	Numberlines/tracks with cubes/counters to visualise – take the cubes away as you count back 6 - 2 = 4 1 2 3 4 5 6 7 8 9 10	Numberlines/100 square (pre-drawn numberlines) 8 - 3 $1 - 3 + 5 - 6 - 8$	Count back in head/use fingers 6-2 = 4 Put the big number in your head then count back 2
Finding the difference	Asking how many more? What is the difference between 8 and 6? Use cubes or counters in a lines parallel or numicon stacked	Draw amounts and calculate the difference (numberlines may be useful – counting on) Difference between 5 and 8	Jack has 6 sweets and Bethany has 8. How many more does Bethany have?

Year 2

Objective/strategy	Concrete	Pictorial	Abstract
Take 10	Take away equipment $ \longrightarrow \qquad $		33-10
Partitioning to subtract (two 2 digit numbers)	Taking away equipment – take 1 ten and 1 unit - using PV grids to help 32 – 11	Draw and crossing out base 10	Can take away mentally using partitioning where decomposition is not needed. 48 – 21=27 40-20=20 8-1=7

Year 3/KS2

Objective/strategy	Concrete	Pictorial	Abstract
Mental strategies			
Counting back/make ten	Using a numberline to count back 123 – 6	Draw a numberline	Counting back in head
HTU – U	Using number facts (make 10)		

Yr 3			
Counting up HTU –	Using a numberline to count on		
TU/HTU - HTU			
Year 3			
Subtract near		Count back in tens on a numberline or	Count back then adjust
multiples of 10,		number square then adjust (add 1, 10,	32 - 9 = 32 - 10 = 22 + 1 = 23
then adjust		100) 6 2 19	
Year 4 with		52-19	
appropriate numbers			
Year 5 – subtract near	-	21 33 42 52	
multiples of 10 and			
100, then adjust	Becomes		
Year 6 - subtract near			
1000, then adjust			
Written methods			
(in order of teaching)			
Numberline to		Empty numberline – counting on	
subtract (year 3)		84 - 56 = 28	
(key skill used for		56 60 80 84	
subtraction inc.			
money throughout			
KS2)			

Column method - begin in year 3 Year 3 – start with small numbers up to 1000 Year 4 – up to 4 digits Year 5 – more than 4 digits and decimals Year 6 increasing large numbers	Using place value grids and Base 10 – start on left and subtract ones, then tens (7 – 4, 30 – 20)	Draw representations 54 - 22 TO	Move to expanded form first to reinforce place value T 0 30 + 7 _ <u>20 + 4</u> <u>10 + 3</u> Move to Formal column TO 37 _ <u>24</u> <u>13</u>
Column method with exchange Year 4 – up to 4 digits Year 5 – more than 4 digits and decimals Year 6 increasing large numbers Contexts varied	Base ten or numicon 52 – 24 Model exchange of 1 ten for 10 ones Move to using PV counters	Pictorial representation showing the exchange	Expanded form (partitioned numbers) 352 - 124 H T O $300 \ {}^{40}50 \ {}^{1}2 - \frac{100 \ 20 \ 4}{200 \ 20 \ 8}$ Moving to formal column with exchanging H T O Year 4 $3\ {}^{45\ {}^{1}2-}$ $1\ {}^{2\ {}^{1}5\ {}^{1}4}$ $2\ {}^{2\ {}^{1}5\ {}^{1}4}$ $2\ {}^{2\ {}^{1}5\ {}^{1}4}$ $1\ {}^{1\ {}^{1}9\ {}^{2}}$

Multiplication: times, double, lots of, multiply, groups of, product, equal groups

Objective/strategy	Concrete	Pictorial	Abstract
Repeated groups/repeated addition	Numicon used to add 2+2+2	Draw groups of the same amount	Count in groups on fingers 2, 4, 6
Counting in groups (multiples)	Skip counting objects – moving them	Counting on numberlines (pre-drawn) with equipment too	Counting on fingers/counting stick
Understand and make equal groups	Equipment cubes/dinosaurs to make groups the same. Noah's ark animals went in 2 by 2 etc	Draw equal amounts in each group	Count in groups on fingers/counting stick 3 groups of 2 = 6 or 3 x 2 = 6

Doubling	Use manipulatives to demonstrate e.g. find the same numicon shape, count out the same amount of cubes. Find the total	Draw the picture needed the show the amount twice	Count on using fingers. Start on six and add six more. Double 6 = 12
Arrays ?	Simple arrays used to show groups of objects	Children draw equal groups (as above)	Verbal use of language 'I have 2 groups of 3'

Objective/strategy	Concrete	Pictorial	Abstract
Doubling (larger	Doubling equipment (base 10,	Draw the same number again	Partition mentally
numbers)	numicon, cubes)		
		• • = • • • • • • • • • • • • • • • • •	$\begin{pmatrix} 1 & 3 \\ 1 & 1 \\ 20 + 6 = 26 \end{pmatrix}$

Counting in multiples 2, 5, 10 (count in steps of 2,3 and 5 from 0)	Repeated equipment	Visuals of repeating groups – numberlines, drawings, bar models	Count groups on fingers complete missing numbers
Arrays to show Commutativity	Counters/cubes/equipment 2 x 5 5 x 2 3 x 4 or 4 x 3	Draw arrays and circle groups in 2 ways to show Commutativity	Instant recall or using arrays to write the equation 3 x 4 = 12

Year 3/KS2

Objective/strategy	Concrete	Pictorial	Abstract
Mental methods and strategies			
Partitioning year 3	leading to:	3 × 24 - count tens - count units :: :: -recombine = "	15 x 3 10 x 3 = 30 5 x 3 = 15 Recombine = 30 + 15 = 45
Use known facts to multiply larger numbers (year 4 and 5)	3 x 4 = 12 3 x 40 = 120 Stacking numicon to show that the second number has become ten times bigger so the answer will be ten times bigger. Extend to larger numbers	Number lines, place value grids 7 4 8 $123 \times 4 = 123 \times 40 = 1204 \times 10^{120}3 \times 40 = 120$	Skip counting multiples, using place value grids 3 x 4 = 12 3 x 40 = 120

Multiply by 10, 100 and 100 Whole numbers and decimals	***children must understand the value of each column in a place value grid as you move to the right each column gets 10x bigger – time must be given to this first	Place value grids – draw equipment (Base 10 or PV counters and model digits moving	mental visualisation 10 x 0.4 = 4 100 x 0.4 = 40
Year 45	 cubes, counters, base 10 and place value grids Cube sticks important for this as can represent ones and tenths 10 x 0.4 What does this mean? 10 lots of 0.4 model making groups and skip counting 	H I U I 6 I 6 I .::	1000 x 0.4 = 400
Grid method to multiply	Use counters to make the link between grid method and arrays, moving onto Base 10 and Place Value counters	Draw calculation as arrays or 3 × 15 counters	Grid method written x 3023906
Year 3 TU x U	X 10 6	3	Moving to TU x TU
Year 4 – HTU x TU		3×15	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Year 5 TU x TU	Place value counter help explicitly show we are finding groups of a number e.g. 3 x 124	3 30 + 15 = 45	6 60 42 200 140 60 <u>42</u> 442

	$\begin{array}{c} \hline 10 & 10 & 1 \\ \hline 10 & 10 \\ \hline 10 & 1 \\ \hline$		HTU x HTU
Column method - short Year 4 numbers up to 2 and 3 digit x 1 digit Year 5 4 digits multiplied by 1 digit Year 6 multi-digit numbers multiplied by 1 digit	6 x 23 100s 10s 1s 100s 10s 1s 100s 10s 1s Model exchanging	Draw column and show exchange 3 x 24	Year 3 Short method (below) TU x U with multiplication tables 2/5/10/3/4/8 Year 4 $467 \times 3 \times by \text{ one digit}$ $\frac{467}{\frac{x \ 3}{1401}}$ Year 5 $2726 \qquad \text{ f.6.76}$ X $\frac{5}{13680} \qquad \frac{x \ 4}{527.0 \ 4}$ $313 \qquad 32$
Long multiplication	PV counters to show TU x TU in grid		Careful teaching of procedure as well as
multiplied by 2 digits	Grid method to show 2 digit by 2 digit – g	good precursor	 Draw layout carefully Put in any place holders before starting Always start with the units of the multiplier

Year 6 – multi-digit numbers multiplied	457×16	= 7316
by 2 digits	457	Multiply by the unit first
	<u>X16</u> 2742	
	4570	
	7316 11	

Division – share, group, divide, divided by, half

Year 1

Objective/strategy	Concrete	Pictorial	Abstract
Division as sharing	Share equipment into pots equally one for you, one for me, one for her	Draw the amounts into circles	Know half of a U number mentally. Half 6=3 Half 8=4

Objective/strategy	Concrete	Pictorial	Abstract
Division as sharing	Share equipment equally between	Draw pots and share amounts using	Know half of a number by partitioning in
	groups.	carefully drawn dots set out in rows and	head.

	10,	columns 12	
Equal grouping	Share equipment equally between groups.	Draw pots and share amounts using carefully drawn dots set out in rows and columns	Know half of a number by partitioning in head. 24 = 12 Half of 20=10 half of 4= 2

Year 3/KS2

Objective/strategy	Concrete	Pictorial	Abstract
sharing equally (year 3)	Using counters to start with low numbers then using place value counters for TU numbers e.g. 66 ÷ 3	Draw counters and share equally – where necessary showing exchanges for ones	Know division facts for associated times tables appropriate to year group and use these to solve calculations which go further than 12x e.g. 42 ÷ 3
	Moving to numbers such as 96 ÷ 4 with an exchange	$42 \div 3$	
Division with arrays (year 3)	Creating arrays and writing associated number facts and inverse $15 \div 5 = 3$ $3 \times 5 = 15$ $15 \div 3 = 5$ $5 \times 3 = 15$	Draw an array	Write the number sentence and all associated facts 15 ÷ 5 = 3 3 x 5 = 15 15 ÷ 3 = 5 5 x 3 = 15 3 = 15 ÷ 5 15 = 3 x 5 5 = 15 ÷ 3 15 = 5 x 3

Remainders	Using cubes, counters, equipment and sharing into equal groups – how many don't make an equal group	Use drawings and numberlines $14 - 3$	Mentally calculate remainders from near times table facts e.g. 33 ÷ 4 = 8 r 1
(year 3)	13 ÷ 4 = 3 r 1		
	Teaching point – look at how the remainder cannot be greater than the divisor		
Written methods			
Numberline (inc.	Division as groups of a number	Draw empty numberlines and skip count	Larger jumps
Remainders) Year 3 Secure this before moving to bus stop	Starting with low friendly numbers Skip counting in multiples of the divisor using visual aids to show Without remainders: ? = 15 ÷ 5	$14 \div 3$ $3 \xrightarrow{3}{6} \xrightarrow{3}{9} \xrightarrow{2}{12} \xrightarrow{14}$	41 ÷ 4 = 10 r1 Reduce steps as table knowledge grows. +40 +1
	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		10 groups

	With remainders: $17 \div 3 = ?$ +3 +3 +3 +3 +3 +3 +2 0 1 2 3 4 5 8 7 8 4 10 11 12 13 14 15 16 17 18		
Bus stop division – larger numbers Year 3 TU ÷ U using only times table facts from NC (2/5/10/3/4/8) (when ready) Moving to: Year 4 up to HTU ÷ U Year 5 up to 4 digits ÷ 1 digit Year 6 – 4 digits ÷ 2 digits (where appropriate)	Use numicon to help teach understanding – stack on top 84 ÷ 4 4 8 4 8 4 8 4 8 4 8 4 6 8 4 6 8 4 6 8 4 6 8 6 8	Drawing equipment or counters underneath	Year 3 Year 4 19r1 $130r359^{4}6 45^{1}23Year 5Year 5P 5 4 r4 or 9541/287652Including decimals189.259^{4}4^{4}6.^{1}0Year 6O 2 1 r 10 O 2 10 r 21153^{2}25 24 5^{5}0^{2}6^{2}1Remainders also given as decimals$

	For 4 digit numbers divided by TU, chunking is used with a coin card
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Partition the divisor to aid $1 \times 24 = 20 + 4 = 24$ $2 \times 24 = 40 + 8 = 48$ $3 \times 24 = 60 + 12 = 72$ $4 \times 24 = 80 + 16 = 96$ $5 \times 24 = 100 + 20 = 120$